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ABSTRACT
We describe a formalism and algorithms for game-tree search in
partially-observable Euclidean space, and implementation and tests
in a scenario where a multi-agent team, called tracking agents, pur-
sues a target agent that wants to evade the tracking agents. Our
contributions include—

• A formalism that combines geometric elements (agents’ lo-
cations and trajectories and observable regions, and obstacles
that restrict mobility and observability) with game-theoretic el-
ements (information sets, utility functions, and strategies).

• A recursive formula for information-set minimax values based
on our formalism, and a implementation of the formula in a
game-tree search algorithm.

• A heuristic evaluation function for use at the leaf nodes of the
game-tree search. It works by doing a quick lookahead search
of its own, in a relaxed version of the problem.

• Experimental results in 500 randomly generated trials. With the
strategies generated by our heuristic, the tracking agents were
more than twice as likely to know the target agent’s location at
the end of the game than with the strategies generated by heuris-
tics that compute estimates of the target’s possible locations.
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Figure 1: Example pursuit scenarios where (a) a tracker team
is able to follow its target more closely by temporarily sacrific-
ing visibility, (b) an evasive target escapes more easily by tem-
porarily revealing its location.

1. INTRODUCTION
We consider multi-agent pursuit scenarios in which there is a

team of tracker agents and a moving target agent. The objective of
the trackers is to observe the target as much as possible and/or to
have the target in at least one tracker’s observation range at the end
of the game. The target may move evasively, or along a trajectory
not known in advance. Movement and observability may be limited
by characteristics of the domain, such as solid obstacles or walls,
or limited by the agents’ own movement and sensor capabilities.

In many multi-agent pursuit scenarios the target will employ
strategies to evade detection or obstruct the visibility of the track-
ers. To be successful, the tracker team must devise a strategy that
can recover from a loss of visibility very quickly, and on occa-
sion sacrifice visibility to maintain a strategic advantage later in the
game. As illustrated in Fig. 1, maintaining visibility on a target
for as long as possible may not result in the optimal pursuit strat-
egy, nor will simply finding a target be enough to ensure that it can
continue to be tracked.

Generating effective strategies for a continuous space, imperfect-
information domain poses several computational difficulties: 1) the
agent team must reason about the geometry of the environment and
the solid obstacles in the world since these usually determine an
agent’s ability to observe the target being pursued; 2) simple heuris-
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tic search and optimization approaches do not always work due to
the uncertainty that arises from the lack of full observability of the
target and lack of perfect knowledge about the target’s objectives
and its strategy; 3) the pursuer agents must generate plans very
quickly and act on those plans since most pursuit scenarios occur
in real time.

Previous work on pursuit and evasion games has often simplified
these challenges by addressing one of two separate sub-problems:
generating pursuit strategies that maintain visibility on a target in
a perfect information domain [5, 24, 22], or pre-computing patrol
strategies that maximize the likelihood of finding an unseen moving
target [13, 38, 21]. Many of the techniques used to address imper-
fect information either omit game-theoretic considerations, or are
formalized for discrete rather than continuous domains [1, 4].

In this paper, we describe a formalism and algorithms for game-
tree search in partially-observable Euclidean space, to address each
of the challenges outlined above. Our contributions include—

• A new formalism for imperfect-information games in n-
dimensional Euclidean space. The formalism allows us to
specify continuous and discrete geometric characteristics, ob-
structed observability due to solid objects, and game-theoretic
information sets, utility functions, and strategies (Section 2).

• A recursive formula for computing minimax values at each
information-set, and a game-tree search algorithm based on that
formula (Section 3).

• A heuristic evaluation function for use at the leaf nodes of the
game-tree search. The heuristic function does a quick looka-
head of its own in a relaxed version of the problem, taking ad-
vantage of the interplay among the problem’s geometric and
game-theoretic aspects (Section 4.3).

• Experimental results that show our heuristic’s effectiveness in
500 randomly-generated imperfect-information pursuit games.
The tracking agents’ success rate (i.e., the fraction of problems
on which the tracing agents knew the target agent’s location
at the end of the game) was more than twice as high with our
heuristic than with two other heuristics, both of which use esti-
mates of the possible target locations (Section 5).

The structure of this paper follows the outline provided above. A
detailed description of related work is provided in Section 6.

2. FORMALISM

2.1 World Models
Let Rn be an n-dimensional Euclidean space that contains obsta-

cles o1, . . . , ok modeled as geometric solids.1 Let r = (r1, . . . , rk)
be a set of agents controlled by an entity called the tracker,
and r0 be a single agent controlled by the target. Let T =
(t0, t1, . . . , tend−1, tend) be a finite sequence of time points that
may be either uniformly or non-uniformly spaced. A trajectory for
ri is a function �i that gives a location �i(t) = (xi1, . . . , xin) for ri

at every time point t ∈ [t0, tend], where t0 and tend are the starting
and ending times.2

Observability and reachability play important roles in deciding
how to move during pursuit tasks. An agent r’s observed region at
location p is Vr(p) = {all locations that r can observe from p};
see Fig. 2 for an example. An agent’s reachability at location p

1In principle, each oi could be any regular, semi-analytic set [16].
2For simplicity of presentation we use a fixed ending time here, but
in general it may vary. For example, it could be the time at which a
robotic agent runs out of power and can no longer function.
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Figure 2: An observable region.

is defined as Rr(p, δ) = {all locations r can reach from point p
in time δ}, where δ is some time interval (ti, ti+1] ⊆ [t0, tend].
This function describes the movement capabilities of agent r in the
problem domain.

At any given time tc, the set of all time points at which the tracker
has observed the target’s location is

T̂0(tc) = {t ∈ [t0, tc] : �0(t) ∈ V1(�1(t)) ∪ . . . ∪ Vk(�k(t))},
where each Vi is ri’s observed region. Hence the tracker has ob-
served a partial trajectory �̂0 : T̂0(tc) → Rn for the target, where

�̂0(t) = �(t) for every t ∈ T̂0(tc). Given the tracker’s observa-
tions, the set of all possible locations for the target is

L̂0(tc) = {�0(tc) : �0 is a trajectory for r0, and

�(t) = �̂0(t) for every t ∈ T̂0(tc)}.

Similarly, if the tracking agents’ trajectories are l = (�1, . . . , �k)
and the target observes partial trajectories l̂ = (�̂1, . . . , �̂k), then

L̂i(tc) = {�i(tc) : �i is a trajectory for ri and

�(t) = �̂i(t) for every t ∈ T̂i(tc)};
L̂ = (L̂1, . . . , L̂k).

2.2 Imperfect-Information Game Tree Search
In what follows, we assume the tracker wants to be as sure as

possible of the target’s location at time tend, hence wants to min-
imize the volume Vol(L̂0(tend)) of the set L̂0(tend) of possible
target locations at the ending time tend; and the target wants to
maximize this same volume. Thus, a multi-agent tracking problem
is a zero-sum game in which the utility function is Vol(L̂0(tend)).

Given a multi-agent tracking problem, we now discuss how to
compute a strategy for the agent team over a finite sequence of
time points T = (t0, t1, . . . , tend). At each time t, the target’s
information set3 I0(t) includes t, the target’s location �0(t), and

the set L̂(t) of possible tracker locations. The tracker’s information
set Ir(t) includes t, the locations l(t) = {�1(t), . . . , �k(t)} of the

tracker’s agents, and the set L̂0(t) of possible target locations.
A pure strategy is a function that, given an agent’s current in-

formation set, returns the agent’s next move (i.e., its change in
location between tj and tj+1). For example, if the target has a
pure strategy σ0, then �0(tj+1) = �0(tj) + σ0(I0(tj)) for each
tj ; and if the tracker has a pure strategy σσ = (σ1, . . . , σk), then
l(tj+1) = l(tj) + σσ(Ir(tj)) for each tj .

3An information set [26, 27] is the game-theoretic analog of a be-
lief state. The main difference is that unless one has a good predic-
tive model of the opponent’s strategy (e.g., [2]), uncertainty about
the other agents’ actions can make it difficult or impossible to put
a probability distribution over the states of an information set.
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A mixed strategy is a probability distribution over pure strate-
gies.4 Let σ0 and σσ = (σ1, . . . , σk) be any mixed strategies for the
target and tracker. Then the expected utility given σσ and σ0 and I
is the expected value E∗(σσ, σ0, I) = E[Vol(L0(tend)) | σσ, σ0, I].
The Minimax Theorem [40] does not apply per se, but an approxi-
mation of it applies, i.e., there are mixed strategies σσ∗ and σ∗

0 , and
a minimax value E∗[I] that corresponds intuitively to the informa-
tion set I’s optimal expected utility, such that

E∗[I] ≈ minσσ maxσ0 E[Vol(L0(tend)) | σ0, σσ, I]
≈ maxσ0 minσσ E[Vol(L0(tend)) | σ0, σσ, I].

From this we can show5 that for any information set Ir(tj) for the
tracker,

E∗[Ir(tj)] ≈ (1)(
Vol(L0(tj)), if tj = tend,

minm maxm0 E∗[Ir(tj+1)|Ir(tj), m, m0], otherwise;

where m and m0 are probability distributions over the moves avail-
able to r and r0 in Ir(tj). Conceptually, Eq. (1) is an analog of
the well-known recursive formula for minimax values in perfect-
information games such as chess, but generalized to accommodate
both geometry and imperfect information.

Eq. (1) can be modified to accommodate limited-depth looka-
head and a heuristic evaluation function h(I) that gives an esti-
mate of E∗(I). In particular, if we look ahead to some time point
td ≤ tend, then

E∗[Ir(tj)] ≈ (2)8><
>:

Vol(Ir(tj)), if tj = tend,

h(Ir(tj)), if tj = td < tend,

min
m

max
m0

E∗[Ir(tj+1)|Ir(tj), m, m0], otherwise.

The above equation provides the basis for the strategy-generation
algorithm in the next section.

3. ALGORITHM
This section develops an algorithm to perform a game-tree search

with limited-depth lookahead in partially-observable multi-agent
tracking problems. Since the number of possible trajectories is in-
finite in multi-agent tracking problems, and thus the reachability at
any particular point may be infinite, we will assume that the prob-
lem space has been discretized, so that Rr(p, δ) is finite for all p.
The geometric-modeling literature gives a variety of decomposition
and tesselation techniques for accomplishing this.

A multi-agent tracking problem can be formally described by the
tuple 〈T, R, V, �0(t0), l(t0)〉, where T is a set of time points, R and
V describe reachability and observability in the problem domain,
and �0(t0) and l(t0) are the initial locations of the agents. We as-
sume that each of the tracker’s agents share a common information
set I , removing the need to compute separate game trees for each
tracker agent. If one of the trackers spots the target, they will all
have that information.

We now describe how to compute the minimax value for a multi-
agent tracking problem. Algorithm 1 shows a high-level descrip-
tion of our game-tree search procedure. The goal of our algo-
rithm is to produce a strategy σ(I(ti)) that specifies the next move

4As a special case, any pure strategy σ can be viewed as a mixed
strategy such that P (σ) = 1 and P (σ′) = 0 ∀σ′ �= σ.
5We omit the proof due to lack of space. The approach is similar in
spirit to the information-set search algorithm in [27], but it reasons
over Euclidean space rather than sets of histories, and accounts for
simultaneous actions by the agents.

Algorithm 1 Depth-limited minimax search for a team of trackers
following a single target.

minimax(I , tj , td)
if tj = tend then return V ol(I)
if tj = td then return h(I)
α = ∞
for all l′ ∈ Γtrack(tj) do

β = −∞
for all L̂′

0 ∈ Γ̂target(tj) do
I ′ = 〈l′, L̂′

0〉
β = max(β, minimax(I ′, tj+1, td))

α = min(α, β)
return α

for the tracker by using a depth-limited game tree search. Be-
cause of the high computational complexity of game-tree search in
imperfect-information games, we have modified Eq. (2) to incorpo-
rate a “paranoid” model of the target’s behavior, i.e., an assumption
that the target always knows the tracker’s location and strategy, and
will choose the moves that are worst for the tracker.

In Section 2 we defined �0(ti) as the location of the target at
time ti, and the set l(ti) = {�1(ti), . . . , �k(ti)} as the location of

the trackers. Additionally, we defined L̂0(ti) as the set of possible
target locations in the tracker’s information set. In order to perform
a game-tree search, we must be able to compute �0(ti+1), l(ti+1)

and L̂0(ti+1) in terms of ti.
The set of possible positions for agent r at time ti+1 can be de-

termined by

γr(ti) = Rr(�r(ti), δi)

where δi = (ti, ti+1]. Regardless of the strategy used by the target,
we can now guarantee that �0(ti+1) ∈ γ0(ti). We can provide a
similar definition for the set of tracker locations, such that l(ti+1) ∈

Γtrack(ti) = γ1(ti) × . . . × γk(ti)

Using γ0(ti) and Γtrack(ti) we can now plot the possible trajec-
tories of the target and trackers. However, to compute the minimax
value for a particular state, we will also need some way to deter-
mine L̂0(ti+1). To do this, we can start by generalizing reachabil-
ity to operate on a set of locations

R(L̂0(ti)) =
S

p∈L̂0(ti)
R0(p, δi).

If a tracker knows the exact location of the target at time ti, then
it follows from the above definition that R(L̂0(ti)) = γ0(ti). Oth-

erwise, R(L̂0(ti)) represents the "expanded" set of potential target
locations at time ti+1. In either case, only some of those locations
are likely to remain hidden from the trackers.

Intuitively, if the target is not observable at time ti, then it must
hold that L̂0(ti) ∩ Vr(�r(ti)) = ∅ for each tracker. For simplicity,
we will generalize observability for the set of all tracker locations

V(l(ti)) =
Sk

r=1 Vr(�r(ti)).

Thus, we can make the following determination:

L̂0(ti+1) =

(
R(L̂0(ti)) \ V(l(ti+1)), if �0(ti+1) �∈ V(l(ti+1))

�0(ti+1), otherwise

We can now update L̂0(ti) for any set of moves selected from
γ0(ti) and Γtrack(ti). This is sufficient for performing a game-tree
search, but some additional work is required to produce a proper
strategy.
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Algorithm 2 Algorithm for computing the relaxed lookahead
(RLA) heuristic.

hd
RLA(I , tj)

v = 0
S0 = L̂0(tj)
S = l(tj)
for i = 0 . . . d do

v = v + |S0 \ V(S)|
S0 = R(S0)
S = R(S)

return v/(d + 1)

3.1 Reasoning about a hidden target
Consider any time point ti at which the target is hidden (i.e.,

not observable by the tracker). Recall from Section 2 that the
tracker’s strategy σσ is a function of the tracker’s information set
Ir(ti), which includes (among other things) the set L̂0(ti) of all
possible target locations that are consistent with the tracker’s ob-
servations up to time ti.

At time ti+1, the target can stay hidden by remaining somewhere
in L̂hide(ti+1) = R(L̂0(ti)) \ V(l(ti+1)), or it can reveal itself at

some location in L̂reveal(ti+1) = R(L̂0(ti)) ∩ V(l(ti+1)). There
are no other possible locations for the target to be at ti+1, and the
exact location is determined by the target’s strategy. Thus in the
game tree, the set of possible “next positions” for the target is

Γ̂target(ti) = {{p} : p ∈ L̂reveal(ti+1)} ∪ {L̂hide(ti+1)}

We can now compactly represent the possible moves of the target
and tracker using the sets Γ̂target(ti) and Γtrack(ti) respectively.
This also provides a “worst-case” target model that depends only
on the tracker’s information set, eliminating a large amount of re-
dundant work from the tree.

The minimax value can be computed recursively (see Algo-
rithm 1) using a heuristic evaluation function h(I) given some fi-
nite search depth td. The algorithm’s performance can be improved
by incorporating alpha-beta pruning, or other traditional game-tree
pruning techniques.

4. HEURISTIC FUNCTIONS
In Algorithm 1’s second if-then statement, the algorithm re-

quires a heuristic evaluation function h to apply to the leaf nodes of
its search. This section defines three different heuristic functions,
the RS, MD, and RLA heuristics, which we will evaluate experi-
mentally later in Section 5.

4.1 Region Size (RS)
The size of L̂0(t) will vary throughout the game, but when it

becomes large, it often indicates that the target is in danger of being
lost. A simple heuristic is to just compute the current size of L̂0(t),
and use that to approximate the minimax value:

hRS(I(tj)) = |L̂0(tj)|
This region size heuristic is a good approximation of the minimax
value only towards the end of the game. Since the heuristic does
not use any look-ahead, there is no guarantee that at time tj+1 the
evaluation won’t rapidly shift in favor of the target or tracker.

4.2 Maximum Distance (MD)
An even more obvious heuristic is to just measure the distance

between each of the trackers and the target. If we compute the

trackers’ A∗ distance6 to each point in L̂0(tj), we can define

hMD(I(tj)) = 1
k

Pk
r=1 maxp∈L̂0(tj) d(�r(tj), p)

This heuristic computes the average of the maximum distance
that the target could be from each of the trackers at time tj . When
used as part of a single-ply minimax search, each tracker will inde-
pendently move in the direction of the target, treating it as though
it’s as far away as possible.

4.3 Relaxed Lookahead (RLA)
Both of the above heuristics reason about the target’s behavior

locally – i.e., by performing a one-step look-ahead – but do not
look ahead farther to predict long-term future consequences of the
target’s strategies in the game. Because of the geometric properties
of a multi-agent tracking problem, it is possible to estimate the size
of L̂0 several rounds in advance, without needing to perform a full
game-tree search. This allows us the benefit of lookahead, without
the requiring an expensive computational effort.

While there may be a number of ways to estimate the size of L̂0

several rounds in advance, we will extend the definition of L̂0(tj)
to include all points reachable by the target d rounds into the fu-
ture, excluding those which could be seen by a tracker under any
potential circumstance:

L̂d
0(tc) = {�0(tc+d) : �0(tc) ∈ L̂0(tc)∧

�l(tc+d) s.t. �0(tc+d) ∈ V (l(tc+d))}.
This relaxation of the problem serves as a very rough approxi-

mation of the value of L̂0(tj+d). Using this approximation, we can
define a relaxed lookahead heuristic,

hd
RLA(I(tj)) = 1

d+1

Pd
i=0 |L̂i

0(tj)|,

which estimates the average size of L̂0(tj) over the next d rounds.
Note there is a special case where h0

RLA(I(tj)) = hRS(I(tj)).
A computable version of this heuristic is shown in Algorithm 2,

which has a runtime complexity that is polynomial in the total num-
ber of vertices searched. This algorithm can be accelerated by
caching the function d(p1, p2), and a similar function v(p1, p2) to
compute the shortest distance from p1 that a tracker needs to travel
to see p2. Each require only a polynomial amount of space to store,
but can reduce the computational overhead significantly.

In our implementation of this heuristic, we evaluate each location
explicitly, such that hd

RLA(I(tj)) is the sum of

Δt(p, I(ti)) = min
r

max
�∈L̂0(ti)

[v(�r(ti), p) − d(�, p)]

summed over all points p that the target can reach in d time steps.
To make this computation equivalent to Algorithm 2, we need to
restrict the values of Δt(p, I(ti)) to the range [0, d]. By doing this,
we attribute equal weight to any target locations that are unobserv-
able for d or more time steps, which may include locations that are
not observable at all.

A proof is omitted, but this formulation allows for more efficient
use of the cached values, while still producing the same result. In
practice, it is also useful to incorporate a tie-breaker in both the
region size and relaxed lookahead heuristics: if either heuristic re-
sults in a tie, we use the max distance heuristic to determine which
is better. This is particularly useful if any of the trackers are iso-
lated, and cannot directly affect the size of L̂0 in the near future.

6This can be accelerated by computing the A∗ distances in ad-
vance, or by caching d(p1, p2) during run-time.
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Figure 3: An example state-of-the-world in the gridworld do-
main. Shaded areas represent the region L̂0 for a target that
has been lost.

5. EXPERIMENTAL RESULTS
To evaluate the heuristics presented earlier, we ran a series of ex-

periments in the pursuit-evation domain illustrated in Fig. 3. Strate-
gies for the tracker agents were computed using the depth-limited
minimax search shown in Algorithm 1 with the RS, MD and RLA
heuristics. We used a similar algorithm to compute three differ-
ent approximations of the “worst-case” target model described in
Section 3.1: our anti-RS, anti-MD and anti-RLA target models ap-
proximate the worst-response to the trackers’ action using a depth-
limited minimax search with the corresponding heuristic function.

Results for each experiment were averaged over a set of 500 in-
dependent trials, each using randomly-generated locations for a tar-
get and two trackers. Each trial lasted for 50 times steps, and per-
formance was measured by the size of L̂0 at the end of the game. In
our scenario generation process, we did not consider scenarios that
are likely to be unsolvable (i.e., scenarios in which the target was
not observable by at least one tracker agent initially), and scenarios
that are likely to be trivial (i.e., scenarios in which the target and
the tracker agents were positioned too closely).
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Figure 4: RLA’s success rate at various prediction depths.

RLA’s prediction-depth parameter. Recall that the relaxed looka-
head (RLA) heuristic has a parameter d, the prediction depth, which
is how far ahead to look in a relaxed version of the game. To see
what values of d would work well in the gridworld domain, we did
experimental tests with d ranging from 1 to 40, on 500 randomly
generated gridworld games. For each game, the tracker performed
a 2-ply search using hd

RLA as its heuristic function, playing against
a simple 2-ply anti-RS target model. Fig. 4 shows the tracker’s
success rate (the fraction of games in which the tracker knows the
target’s exact location) as a function of RLA’s prediction depth in
the gridworld domain. Since the curve peaked around d = 10, we

used d = 10 for RLA in the experiments reported below.

Comparison of the three heuristics. To compare the RLA, RS, and
MD heuristics, the tracking agents were tested at 2-ply, 4-ply, and
6-ply7 search depths, against the three target models, for a total of
27 different experiments. The target in each experiment operated
independently, according to its own 4-ply game-tree search.

In our experiments, the RLA heuristic performed much better
than the naive RS and MD heuristics. More specifically:

• Fig. 5 shows the average size of L̂0(tend), the area in which
the tracker knew the target might be located. Note that the size
was much smaller (i.e., better tracker performance) when the
tracker used the RLA heuristic than when it used the RS and
MD heuristics, regardless of which target model was used.

• Fig. 6 shows the tracker’s success rate, the fraction of games in
which the tracker knew the target’s exact location at the end of
the game. The success rate was twice as high when the tracker
used the RLA heuristic than when the tracker used the RS and
MD heuristics, regardless of which target model was used.

Performance versus search depth. The following table gives the
average running times8 of game-tree searches using each heuristic,
averaged over the same set of trials as in Figs. 5 and 6.

2-ply 4-ply 6-ply

RLA 30ms 144ms 2361ms
RS 15ms 74ms 1069ms
MD 15ms 78ms 1306ms

Although searching deeper into the game-tree produces strate-
gies that are slightly more successful, the most dramatic results
come from changing the heuristic, which requires considerably less
computational effort for an equivalent gain in performance. In par-
ticular, let us compare a 2-ply search with RLA to a 4-ply or 6-
ply search using RS or MD. Of these five searches, the above table
shows that the 2-ply RLA search has the smallest running time, and
Figs. 5 and 6 show that it also has the best performance.

Example strategy execution. Fig. 7 shows an example of the tra-
jectories generated by our implementation. This is a simple prob-
lem with two tracking agents using the h40

RLA heuristic9 against the
corresponding anti-RLA target model.

Notice that, from the beginning, the two trackers split up and
attempt to block the target from separate directions. Tracker r1,
which takes the longer route, has no immediate benefit from mov-
ing away from the target. It is only because of the deep lookahead
provided by h40

RLA that this occurs. Had the tracker taken a more
greedy approach, such as with the max distance heuristic, then it
would have missed the opportunity to block an escape route.

In addition to splitting up, tracker r2 waits at a key location from
time t18 to t31, blocking two paths. This behavior is not specific to
RLA, but also appears using the region size heuristic. If the agent
leaves that location prematurely, it risks increasing the size of L̂0

from either one direction or the other. In other words, by being
impatient, it would allow the target to escape back the way it came.

In practice, not all scenarios play out as well as this one. How-
ever, the combination of a short game-tree search, with a long-
term predictive lookahead, help explain the performance benefits
detailed in the previous sections.

7We define a ply as a single move by either player.
8The experiments were run using Java VM version 1.6, on a
2.4GHz processor with 1GB of available memory.
9For this example, the values of Δt used to compute the RLA
heuristic were restricted to the range [0,1].
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Figure 5: Average region size V ol(L̂0(tend)) after 50 rounds for RS, RLA, and MD tracker agents versus (a) anti-RS, (b) anti-RLA,
and (c) anti-MD target models in the gridwold domain. Each bar is an average of more than 500 trials.
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Figure 6: Tracking success rate for RS, RLA, and MD tracker agents versus (a) anti-RS, (b) anti-RLA, and (c) anti-MD target models
in the gridwold domain. Each bar is an average of more than 500 trials.

(a) (b)

Figure 7: (a) Strategies generated by our algorithm on a simple tracking problem; note how trackers r1 and r2 move to block two
escape routes. (b) The tracker’s observable regions V1(t18) and V2(t18) and its set L̂0(t18) of possible target locations, at time t18.
The circles show the tracking agents’ maximum sensor distances.

6. RELATED WORK
Much of the existing work on visibility-based pursuit-evasion

games centers on robot patrolling, or hider-seeker games, where the
objective is to find an unseen target moving within some enclosed
domain. Versions of this problem exist for both continuous [37, 21,
13, 23, 38] and discrete domains [28, 1, 4, 17] resulting in a variety
of different approaches. Distinct from the work in this paper, patrol
strategies do not typically specify a pursuit strategy once the target
has been found, and thus are often pre-computed.

In a continuous domain, patrol strategies can be computed by
tesselating the environment into cells, and modeling the pursuer as
a visibility ray or cone [37]. Various algorithms exist to compute

the route a pursuer should patrol to detect an evader, or to deter-
mine that no solution is possible [21]. In most cases, the problem is
simplified by assuming the target has unbounded speed [13], or by
approximating its movement [38]. As a result, game-theoretical el-
ements often play a less significant role, although some techniques
rely on them more heavily than others [23].

Graph-based versions of the hider-seeker game have existed for
some time [28], but have not always modeled observability explic-
itly. Discrete versions of the visibility-based problem have been
addressed using techniques from game-theory, including equilib-
rium concepts, and non-deterministic strategies [1, 4]. A variant of
this problem, where the pursuer is free to observe an arbitrary sub-
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set of the domain each round, has been shown to be NP-hard [17].
However, this work is again focused primarily on computing patrol
strategies, with the additional limitation of only considering games
which are finite.

Substantial work exists on visual tracking of a moving target
both with and without obstacles [22, 20, 24], however these tech-
niques do not typically consider imperfect information, and cannot
extensively model scenarios where visibility has been lost on the
target. Some special cases have been investigated in which the ob-
server keeps a given distance from the evader [24] or in which the
observer has bounded velocity [25]. Reinforcement Learning (RL)
[36] has also been adapted for this task. For example, [18] studies
two cases, where the target is adversarial and non-adversarial, and
proposed a RL-based learning rule in order to generate actions for
the pursuers depending on the rewards they will get based on both
their and the evaders movements in the world. One drawback is that
the model proposed by this paper is discrete, i.e., it does not handle
continuous environments as the approaches mentioned above.

In robotics, many different approaches have been proposed for
planning autonomous robot operations for pursuit and evasion sce-
narios. A widely-known tool is differential game theory [3], which
extends sequential game theory to continuous time. Based on this
theory, a pursuit and evasion game is modeled using differential
equations with continuous variables that describe the dynamics of
the game (e.g., the pursuers’ and evaders’ speeds and the time it
takes for a capture). Nash Equilibria have been shown to exist
for certain differential game variants of the pursuit-evasion prob-
lem [5]. However, differential models are often limited to games
where the target remains visible, due to the challenge posed by im-
perfect information. Furthermore, solving a differential equation
system requires significant amounts of computational time and re-
sources in general, and many have argued that it is not feasible for
planning actions in real time [23, 39, 34, 12].

Game-tree search has been highly successful in finite perfect-
information zero-sum games such as chess [8, 7] and checkers [31],
where the minimax theorem [40] applies. The basic idea is to com-
pute approximations of minimax values using a depth-limited ver-
sion of the minimax algorithm [33]. Numerous techniques have
been developed to speed up the computation or make the approxi-
mations more accurate; some of the best-known techniques include
alpha-beta pruning [19], transposition tables [8], and quiescence
pruning [32].

Much work has been done during the past decade to extend game
tree search to imperfect-information games such as bridge [35, 15],
kriegspiel [27, 30], and poker [14, 6, 9]. One of the biggest prob-
lems is computational complexity, which is exponentially worse
than in perfect-information games [29]. Some of the more popular
approaches for alleviating this complexity involve doing the game
tree search over a simplified game that has a smaller search space
[6, 14], aggregating sufficiently similar states into groups that are
treated as if they were identical [15, 35], and Monte Carlo rollout
techniques that search a stochastic sample of the states in the game
tree [27].

7. CONCLUSIONS
We have described a formalism that combines geometric and

game-theoretic reasoning in imperfect-information multi-agent
pursuit games. Based on this formalism, we have presented a re-
cursive formula and search algorithm that are similar to game-tree
search in perfect-information games such as chess, but generalized
to accommodate both geometry and imperfect information. Our
results show how our algorithm can be used to compute strategies
that are considerably more sophisticated than simple strategies that

just chase after the target.
Our experimental results show how the interplay between the ge-

ometric and game-theoretic aspects of our problem domain can be
used to compute powerful game-tree-search heuristics. In partic-
ular, our RLA heuristic function works by creating a relaxed ver-
sion of the problem that can be searched very quickly, and doing
its own lookahead search in this relaxed problem. The relaxation
involves analyzing the tracking agents’ observability ranges at a
particular future time point t, ignoring the dependencies among the
trackers’ actions, and considering all possible courses of action for
the trackers a tracker could take up to time t. In our experimen-
tal results on 500 randomly generated problems, the RLA heuristic
performed twice as well as two other heuristics: the MD heuristic,
which measures the distance from the target, and the RS heuristic,
which evaluates the level of uncertainty about the target’s location.
The difference in performance was so great that RLA at 2-ply per-
formed better than MD and RS at 4-ply and 6-ply.

Future work. In this paper, we reduced the search algorithm’s time
complexity by making a "paranoid" assumption about the target’s
behavior. This model has worked quite well in perfect-information
games such as chess, but tends to produce strategies that are overly
cautious, posing challenges both theoretically [11, 10] and experi-
mentally [27] for imperfect-information games. Consequently, two
important tasks will be (1) to develop and test several alternative
models of the target’s behavior, and (2) to investigate other ways of
reducing the search complexity.

Adapting the algorithm to support mixed strategies would im-
prove the effectiveness of the algorithm, but at the cost of a sig-
nificantly increased running time. An exploration of this tradeoff
could help discover when the paranoid assumption does and does
not do well.
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